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STOCHASTIC BOUNDS NN DISTRIBUTIONS OF OPTIMAL VALUE FUNCTIONS
WITH APPLICATIONS TO PERT, NETWORK FLOWS AND RELIABILITY
Gideon Weiss

Georgia Institute of Technology and Tel Aviv University
Abstract

Meilijson and Nadas [1979]) have obtained stochastic bounds in the
convex majorisation sense to the critical path length of a project
network with random activity durations. 1In this paper we present those
results in a more general framework and, using similar techniques, obtain

bounds for shortest route, maximal flow and reliability system lifetime.

Subject classification: #488 Bounds for stochastic networks
#672 Convex majorisation of project critical path length.

#725 Stochastic majorisation of reliability system lifetime.

Consider a set I = {1,..., n} of n nodes, the base set. Let 11,

ceoy Ik be subsets whose union is I, and no two of which are ordered by

inclusion; {Ij} 1l < j <k is a clutter over I. The blocking clutter to

{Ij} is a clutter Jpreces Jz such that I Jg * ¢ for all r, s, and Jj

are minimal sets with this property, cf. Edmonds and Fulkerson [1970].
In a directed acyclic graph or in a two terminal network, the paths and

cuts are an example of a palr of blocking clutters. We call I a system,
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and {Ij} 1 <j <k, {Jj} 1 < j < 2 the paths and cuts of the system. Let

a weight X, be associated with each node 1 of system I. In many

i
combinatorial optimization problems the system has an optimal value
function, a function of Xl,..., Xn’ which is defined by the clutter of
paths or of cuts. To illustrate:

- Critical path of a PERT network (Elmaghraby [1977]): the nodes
represent activities, the weights activity durations, the network the
precedence constraints. The critical path length is the shortest time

needed to complete the project, given by

M = max T Xy (@))
1<jck ite

over the clutter of paths.

- Maximal flow (Ford and Fulkerson [1962], Lawler {1976]): the nodes
represent pipelines, the weights maximal flow capacities. The maximal
flow through a network from source to sink is:

L=min Xy (2)
1<j<e ist

over the clutter of cuts.

- Shortest route (Ford and Fulkerson {1962], Lawler [1976]): the nodes
represent sections of routes, the weights their lengths, the network
their connections; the shortest route from source to sink is given by L,
over the clutter of paths.

- Reliability system lifetime (Barlow and Proschan [1975]): the nodes

represent components, the weights their lifetimes. The system lifetime

can be expressed in terms of the paths {Ij} or the cuts {Jj} as:
T =max min X; = min max Xi (3)
1<j<k ist 1<j<e 1er

The formulation of M, L, T via clutters applies equally well to

structures more general than networks, e.g. precedence relations among
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‘h project activities can be defined by any partial order, and a reliability :z
}i system can be defined by any Boolean coherent structure function. The .'\
equality (3) holds for any pair of blocking clutters, cf. Edmonds and 3&
o Fulkerson [1970]. £
he o
The stochastic behaviour of the optimal value functions M, L and T i;
!! is introduced as follows. Let the weights X,,..., X be random ;;
- variables, with marginal distribution functions Fl,..., Fn and a joint EE;
B distribution P. Then M, L, T are random variables. It is extremely G
'! difficult to obtain the distributions of M, L, T - this is so even in the t:f
f case where Xl,..., Xn are independent, since different 1.'s will in iig
:% general have nodes in common and not be independent. Nor 1is it any 5{
. easier to determine single values such as E(V), P(V > y), E(V - y)t where f;
- V is any of M, L or T (here z+ = max (z, o), z = (—z)+). Let p denote 'EE
. the family of all the joint distributions of Xyseeey X with the given -'...
marginal distributions Fl""’ Fn' The subject of this paper is the ;&
55 investigation of: ;;
.. ¥(x) = six]p E(M—x)+ :'\:::
- n(x) = =

sup E(L-x) (4)
p

o
»
o
2

\
%, :I-

g a(x) = sup P(T>x) wod
p S
! B(x) = sup P(T<x) T
i" p ij..
=
‘ R
‘. We show how each of the functions ¥, n, a, B can be calculated as the i;‘
» solution to an appropriate mathematical programming problem which is in ey
4 . " o
. general substantially easier than the calculation of E(M-x) , E(L - x) {:{
;: or P(T > x) for a particular P e¢]). The suprema in (4) are attained for :if'
& S
every x, that 1is, for every x there exists a joint distribution P for Ny
- o
. + N
-: which ¥(x) = E(M - x) , and similar distributions attain the supremum for ~i:
® e Y
.‘:\
NI

<




n, o, B. The joint distributions which attain these suprema can be chosen to
have a special form. Define the inverse of a distribution function as

Fl(u = inf {x | F (x) > u}

and let U be a uniform random variable on (0, 1). Then Xl,..., X = F-l

n 1
(¢l(U)),..., F-i(¢n(U)), where U is common to all the nodes, and the functions

L)

¢1,..., ¢n are piecewise linear, with a finite, not exceeding max (k, %),

13

MR gt IV S I

number of discontinuities. ¢1,..., ¢n are obtained explicitly from the

solution of the mathematical programming problems, together with additional
structural information about the system.
The functions ¥, n, a, B can be used to define random variables ﬁ, L, T

and T as follows:

i ¥(x)

x) (x)
X) a(x)

X) B(x)

By their definition (4, 5), Mis convexly greater, L is concavely smaller,

T (T) is stochastically greater (smaller) than M, L, T respectively, for any

distribution P ¢ p .
The definitions of X stochastically greater than Y (X >ST Y) and of X

convexly (concavely) greater than Y (X > Y, (X < Y)) are (cf Stoyan [1983]):
X >ST Y &=>¥%¥x P(X > x) »P(Y x) <=> Eh(x) » Eh(Y) ¥h nondecreasing
<{=> ¥x E(X x)+ > E(Y x)+<=> Eh(X) » Eh(Y) ¥h convex nondecreasing

<=> ¥x E(X - x) < E(Y - x) <= Eh(X) » Eh(Y) ¥h concave nondecreasing

<{=> ¥x E(x X)+ < E(x Y)+<=> Eh(X) < Eh(Y) ¥h convex nonincreasing

{=> - X € -
c
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We say that the random variables ﬁ, L, T, (T) are coavex upper,
concave lower and stochastic upper (lower) bounds for M, L, T. Clearly
by (4, 5) they are sharp bounds, in the sense that if for example Z )c M

for every P ¢ P, then Z >, M. By the properties of » Eh(M),

sT* %¢’ %k
Eh(L), Eh(T), Eh(T) provide bounds for Eh(M), Eh(L), Eh(T) for every

P e p , whenever h has the appropriate monotonicity and convexity
properties; these bounds are not necessarily sharp, unless ﬁ, L, T, T are
obtained within p .

In general, M, L, T and T are not obtained within P . If however the
system 1s series parallel, then there exist joint distributions in p for
which M = M,or L=Lor T-= T, T = T; bounds for series parallel systems
are discussed in section 1, together with a discussion of modular
decomposition. 1In sections 2, 3, 4 we discuss each of the optimal value
functions, M, L and T separately. We conclude in section 5 with some
general remarks on the type of bounds presented in this paper, and with a
comparison with other types of bounds which appear in the literature.

The present work is based on a paper of Meilijson and Nadas [1979],
who derived the properties of ¥(x). Some of the results on ofx), B(x)
have been previously obtained by Zemel [1982]. A brief summary of the

present paper appeared in Weiss [1984]. Some related results and

extensions appeared in klein Haneveld [1982], and Meilijson [1984].

1. Bounds for Series Parallel Systems.

The pure serles system with nodes 1,..., n has a single path I

1
I ={(1,..., n} and n singleton cuts, Jl = {1},..., Jn = {n}. The pure

parallel system has paths Il = {1},..., In= {n}, and a single cut Jl =

n
{1,..., n}. For the pure series system, M = L X L=T-=min X,. For
=1 1<i<n

n
the pure parallel system M =T = max X,, L = I X, .
1<i<n i=

e
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AN The following three special joint distributions of Xl""’ Xn are

essential in this paper; they provide the bounds for the pure series and

-
'l

the pure parallel systems (U is a uniform random variable on (0, 1),

F(x)=1-F(x) =PX>x)):

LLAA

- The "perfect tracking” distribution P*: Xl,..., Xn = FIl (UW,...,

v
]

g - The "max antithetic” distribution P** defined inductively for n = 2
-
.
g -1 -1
- - *
by Xl’ X2 Fl (m, F2 (1-U) and, given P** for Xl’ . xn—l and Yn—l
g -1 -1
R = = - -
2 max Xi, Xn and Yn—l are distributed by Yn—l’ Xn FY w, Fn (1-U)
1<i<n~-1 n-1
:2 - The "min antithetic” distribution P*** defined similarly to P** with
"
e
Z = min X, replacing Y .
=l icn-1 T n-1
a It is easy to check that P* (P**) stochastically minimises (maximises)
N max Xi’ and P*(P***) gtochastically maximises (minimises) nin Xi over p
. 1<i<n
by achieving equality in:
n
max F1 (x) <P (min Xi < x) <min (1, & Fi(x))
1<i<n 1<i<n i=1
u _ 0
- max F1 (x) <P (max X1 > x) < min (1, ¢ Fi(x)).
B 1<i<n 1<i<n 1=1
- Also, P* convexly maximizes and at the same time concavely minimizes
n
Q T Xi as is seen by the following argument: For every x and v and every
'\. 1:1

ye P e):




N o
= 7

o

o~ n -1 -

:; On the other hand, note that I F, (u) is left continuous non- :::-

i=1 -

e n -1 .::.:
i decreasing in u, so for given x we can choose u, such that I Fi (uo) <X

i=1 e

no R0

.: < I Fi (u°+), and we can then choose vy for i = 1,..., n for which }:}_

", i=1 o

n e

F“1 (u) <v, < F—l (u +), so that I v, = x. Using those v _, for X, £ = ==

i o i i o i i i o

' i=1 a7l

) F;l (u), 1 =1,..., n as in P*, the above inequalities hold as equalities. ::_';-:

e

These properties of P*, P** Pk** ensure that the various bounds are >

- obtained within p in the pure series and in the pure parallel case. -

. e
N - —_ * )
g Theorem 1.1: For the pure series system, M and T are obtained by P , L
- and T are obtained by P***, and L <ST L for all P € ). For the pure ‘:::';

parallel system, M and T are obtained by P**, L and T by P*, and M st M
- for all P ¢ P.

. A useful concept in the theory of networks or clutters is that of .
.. decomposition into modules (or autonomous sets), as discussed by Barlow .
- and Proschen [1975] and by Mohring and Radermacher [1984]. Consider a :‘:::
s ‘o=
- * * * * * ~ o

set T , I < 1I, and let Il,..., Im be all the different subsets of I of

o * * -
. the form I n Ij’ 1 <j <k. Then, I 1is a module of the system I 1if: "
- * * i

(1) Il,..., I form a clutter. A
hd m ..‘_.
* *
- (fi) Whenever Ii nl = Ij it follows that for every r, 1 <r <nm -

* * )

- U = —

] there exists an s, 1 < s < k, such that (I1 IJ.) Ir IS. e
- * ~:‘.
The module I 1is called nontrivial if it has more than 1 and less than NS

- x '.'_:.
s n nodes. The quotient system I/I is formed by replacing all the nodes :~:'

*

of T in I by a single new node o, with a similar replacement im each

path of the clutter {Ij}. It i{s mavbe more intuitive to think of a f-:‘-f

..,.

& system, module, and quotient system in the reverse order: Start with the .
v -0

-

quotient system and the module (those can be any two systems), choose a N

. N
‘.:-. node in the quotient system (node o can be any node) and replace this RO

)
“~
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{;; node by the base set of the module; then augment the clutter of the
A quotient system, by replacing each path which contains o with m new paths
|
"l in which o is replaced by I:,..., I;. For a nontrivial module I*, call 1
L ae a modular composition of I*, I/I*and call I*, I/I* a modular

-
[:}- decomposition of I.

l. Mohring and Radermacher [1984) discuss the preservation of M, L, T
- under modular composition. Let V represent any of the optimal value

é, functions M, L or T. For weights Xpseees Xy let v, V* be the optimal

values for the system I and the module I*. Then V can also be calculated

in steps: Obtain V*, assign the value V* as the weight of node o in I/I*,
calculate the optimal value for I/I*. For Xl""’ Xn random with joint

distribution P € p , V and V* are random variables. The distribution of V
can be calculated in steps: Obtain the joint distribution of V*, assigned

*
to node o, joint with the weights of the other nodes of I/I , and obtain the

v
o

*
distribution of the optimal value of I/I for that joint distribution.

.

In the following sections we prove that modular composition also

AL

preserves the bounds ﬁ, L, T, T. We show for each of the optimal value

functions that:

Theorem 1.2: If module I* is replaced by the single node o, with
weight Xo that has as its marginal distribution the distribution of the
P bound for I*, then the bounds for I/I* and for I are identical.
A general series parallel system 1Is defined (inductively in the
number of nodes n) as a system which 1s either pure series or pure

* *
parallel or has a nontrivial module I and quotient system I/I both of

. ..'._"7

which are series parallel. Combining theorems 1.1 and 1.2 we have:

R Theorem 1.3: For a series parallel system the bounds ﬁ, L, T, T are

o obtained by joint distributions within p .

Proof: Combining theorems 1.2 and 1.1 provides a direct construc-

tion of the joint distributions for which M, L and T are extremal.

.
.
LD
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2. Convex Upper Bounds for Critical Path Length

In this section we discuss the optimal value function

M = max z X

Lejek 1€l L

Preees X

Fn and a joint distribution P ¢ ]

where I = {1,..., n}, Il,..., Ik is a clutter over I, and X

have marginal distributions Fl,...,
(the dependence of M on P is suppressed to simplify notation). We start
by quoting the results of Meilijson and Nadas [1979].

Let Y(x) be defined by:

¥(x) = inf {( max z vy~ x)+ + T E(Xi - vi)+} (6)

\ 1<j<k ite ilel

and let x, = inf {x | ¥'(x) > -1}. It turns out that the calculation
of (6) for x > xo is equivalent to the solution of the following
mathematical program with a separable convex objective function and

linear constraints:

¥(x) = min I E(xi - vi) D,
v iel

. s.t. L vy $x i=1, ..., k.
‘I iel,
g J
Denote by Al,..., Xk the Lagrange multipliers (dual variables) of the

constraints.

Theorem 2.1:

Tl

(1) ¥(x) = Sﬁp E(M - x)+

L4

(1i) There exists a random variable M such that for all X,

-— + —
¥(x) = E(M - x) ', and M >_M for all P e .
(iii1) For every x there exists a P ¢ p for which E(M - x)+ = Y(x).

(iv) A particular P ¢ p satisfying (iii) 1is of the form X ., X =

1 n

F11(¢1 w),..., F;1(¢n(U)), where U ~ U(0, 1), and 4, have at

g

most k discontinuities and are linear inbetween.




4

$% Y
D

%
s

LS

SA

10
(v) For every x and P as in (iv), the Lagrange multipliers of (7)
satisfy:

Aj <P(M>x, I X, =M)

i
iel
h]

With equality if all F,'s are non atomic (absolutely continuous).

i

(vi) The constant max I E (X,) is convexly smaller than M for all
. i
1<j<k ite

P e p s iIn particular it is < E(M).

Outline of the proof: (i) For every x and every vector v, for every

joint distribution P ¢ p and every realisation X Xn drawn from P:

1P
+ + B +
M-x) <(max I v,-x) + I (X, -v,) (8)
. i i i
j iel, i=1
J

which shows that the right hand side of (6) is » E(M - x)+ for every
P ¢ . Equality to the supremum over P follows from (iii).
(ii) Examination of (6) shows that ¥(x) is convex nonincreasing in x
with slopes tending to -1 and O as x tends to -« and «~. Hence Y(x)
defines a random variable M according to (5), and M ’ M for all P € .

For x > x_, v which minimises (6) satisfles max I v, =1x, and so it
o X i
1<jk fel,

minimises (7), and (6) and (7) are equivalent. The solution of (7) at
X > say vo, minimises (6) for all x < X

(iii, 1iv) Consider the Lagrangean of (7):

¥(v, A, X) = I E(Xi - vi)

n + k
+ I A (I vy = x) (9)
1=1 j=1 J Lel,

with Aj ? 0. The Kuhn Tucker saddle point conditions for it are:

L v, <xand f v, < x implies A, = O

ter, fer, 1 J
J J
P > vp) €I SRR > V) (10)
jliel
J
- k -
P(M> x) < T XA, <P(M > x).
=1

gy -
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For a given x > X let Viseres Voo Al,..., Ak be an optimal

k
solution and a set of multipliers of (7,9). Let Ak+1 =1-1I Aj’
j=1
Ik+1 = ¢ @ = . pX Aj’ 1=1,..., n. The joint distribution P ¢ ]
Jlite

n

stated in (iv) 1is defined by the functions ¢i’ i=1,..., n which for

m-1 m
m=1,..., k+1land £ A, < u< I Aj have the value:
j=1 J j:.-l
o1
(1 - ai) + ai (u - j=}-:l )‘j)/)\n iel
= 11
$1(w) L (11)
(l_ai) (u - jfl Aj)/ﬁm 1 £ I

m-1 m
(v) For XA 40, with probability A , I XA <UK £ A, in which
m g =1 3

case 1 - oy < ¢1 (U) < 1, and by (10) X1 = F;l (¢1(U)) >V for all 1 ¢

i’
Im, while at the same time, Xi < A for all 1 £ Im. By (8), we see that

in this case M - x = ¢ (Xi - vi) and I v, = X, so M= Xi > X.

iel iel 1el
m m m
The required inequality follows, and equality for nonatomic distributions
follows similarly. Finally, (vi) holds by Jensen's inequality.

Corollary 2.2. Modular decomposition: Theorem 1.2 holds for the function

M.
* * * *
Proof: Let I c I with clutter Il,..., Im be a module of T, and let 1/I
- *
be the quotient system, with set of nodes I = (I - I ) VU {0} and clutter

of paths Il,..., Il' Let Y, Wo, Wl and M, Mo’ M1 denote the bounds for

* *
the systems I, I , I/I respectively. We look at the program (7) and the

two additional programs:

+
Wo(y) =min I , E(Xi - ui)
u fel
s.t. I, uy <y j=1,.00, m (12)
iel

3

T AT
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+
?(x) = min T , E(X, = w) + ¥ (w)

w 1ieI-1 L

s.t. I 1%

_ < X J=1l,c.04, 2 (13)
ite

i

< + +
Since Wo(wo) = E(Mo - wo) = E(Xo— wo) s Wl(x) is the bound for the module
*
I/I . We need to show that ¥(x) = Wl(x) for all x.

(1) ¥x) > Wl(x): Let v be an optimal solution of (7).

Define:
w_ = max z vi
1<j<m ielg
*
wi = vi iel-1.

*x
Because I 1is a module, and v is feasible for (7), w is feasible for (13).

The value of the objective function (13) for w is I E(X1 - vi)+ +

*
1el-1
*
Yo(wo). But {vi} i e I 1is feasible for (12) with y = L and so ?o(wo)

< I, EX

+
- vi) , S0 the value of the objective of (13) for w is < ¥(x),
i1el

i
and therefore Wl(x) < ¥(x).

(ii) Wl(x) > ¥(x): Let w be an optimal solution of (13). Let u be an

*

optimal solution of (12), with y = W let v, =u,, 1 €61 , and

i 1

* *
VT WL, 1 eI ~1. Because I 1is a module, v is feasible for (7). The

objective value of (7) for v is

+

+
T E(Xi - vi) = T E(xi -w i)

+
DM S ¢ SR
* *
iel iel-1 1€l

+
= I (X1 - wi) + Yo(wo) = Wl(x),
iel-1

thus ¥(x) < Tl(x).

Monotonicitz:

Corollary 2.3: 1If X1 are replaced by Zi so that Z1 >c xi, i=1,..¢, n

R U St e et
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then the bounds Ml’ M obtained for Zl,..., Zn and Xl""’ Xn satisfy Ml >c
F(.
. (1) (1
Proof: Let Wl(x), Viiseees Vo be the solution of (7) with Zi replacing
5 ° (1)+
X,. By Z, > X, ¥x) = ¢ EX, - v Y < ¥ (x). Minimising (7) with
i i ¢ '1 i=1 i i 1

Xi’ we get ¥(x) < ?(x) < Yl(x), so for all x, E(M - x)+ < E(b—'l1 - x)+.

Computational Aspects: Nadas [1979] discusses the computational aspects of

solving the mathematical program (7), which with its linear constraints and
separable convex objective function is relaively easy. If E(Xi - vi)+ is
approximated from above by gi(vi) plecewise linear and convex, the program
can be solved as a linear program, and provide an upper bound for ¥(x).
The approximation is equivalent to replacing each Fi by an approximating
discrete distribution, and it can be chosen so that 0 < gi(v) - E(Xi - v)+
< § for any given § > o, uniformly for all v.

In the project planning application, the nodes represent activities

and the clutter I I, is defined by the partial ordering of

v Iy
activities, and consists of all the paths from the start to the finish of
the job. In that case the program (7) has the following deterministic

interpretation: Find activity durations Vises+s V SO as to complete the

whole project by time x at minimal cost, where doing activity i in duration

v, costs E(Xi - v

{ i)+. This is the project cost curve problem, solved by

Fulkerson [1961]. The solution is effected, parametrically for all x, by
formulating the dual problem which is a minimal cost flow problem, and
solving it parametrically for all flow values; this can be done by the very
efficient out of kilter method, cf. Lawler {1976]. The minimal cost flow
problem that arises from the dual to (7) is: For any total flow value A,

find flows ay through the nodes {, 1{ = 1,..., n which yield total flow A,

at minimal cost, that is:
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n
min iflhi (ai)
(14)
s.t. min T a = A i=1,.¢c, n

1<j<s Led,

is the blocking clutter of cuts, and where:

where Jl’...’ J

2
hy(@) = 7 max (F (t) - o 0) dt = };“'le (u) du. (15)

The total flow value A, and the flows through the nodes a which are

obtained from the solution of (1l4), are related to the X 's in (9), (10)

k
through A = I A,, a = z A.» The corresponding values of x and the .
k| i . e
=1 jliel e
j e
Do
vi's in (7) can be obtained from (10). {4?
s
e

Redesign of a PERT network: It is quite usual when designing a project

with a PERT network to have a target date x for the completion of the
project, and a nondecreasing convex penalty function C(y) for values M = y
» x. For such a penalty function,

E(C) = C'(x) ¥x) +/C"(y) Wy)dy (16)
where C', C" are the 1lst and 2nd derivatives of C, is an upper bound on the
expected penalty.

For the target date x, the expected tardiness E(M - x)+ is bounded
sharply by ¥(x), and the solution of (7) provides a construction for the
worst case distribution with respect to that tardiness. It also provides a
host of additional information on that worst case distribution which can be
used to redesign the project. Let v = v(x) = vi(x),...,vn(x) be the values

of the solution of (7), Al(x),...,kk (x) the Lagrange multipliers, and

ai(x) = I A, (x), 1 =1, ..., n.

jlite i
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The values vi(x) provide target durations for the activities with

respect to the general target date x. If we let Yi(x) = E(X1 - vi(x))+,
then Wi (x) 1is the expected contribution of node i (activity 1) to the
total tardiness. Similarly, for a module I* we get by solving (13) for
I/I* and due date x, a value wo(x) which is the target duration of the

*
module I with respect to the general target date x, and we can get ¥ _(x)
I

- +
= E(Mo - wo(x)) (obtained by solving (12), with y = wo(x)), as the
*
expected contribution of module I to the total tardiness. If ?1(x) or

¥ , (x) is inserted in (16) instead of ¥, we obtain Ei(C) and E x (C) which
1 I

are the worst case bounds on the expected contribution of i or I* to the
penalty. Thus the vi(x) and wo(x) provide a way of assigning tardiness and
penalties to each activity or module (on the basis of a worst case
analysis).

The values Aj(x) provide, for the worst case distribution, the
probability that tardiness beyond x occurs, and that the longest path is Ij
(at least if all Xi's are continuous random variables), as stated in
theorem 2.1. It is also easy to see from the proof of theorem 2.1 that
ui(x) 1s the probability that tardiness beyond x occurs and that node i is
on the longest path.

Similar quantities can be calculated for a module I*. Solution of
(12) with y = wo(x) provides A's and a's within I*. Solution of (13) for
I/I*, provides by the value ao(x) the probability that tardiness beyond x

*
occurs and the longest path passes through I .

3. Concave Lower Bounds for Maximal Flow and Shortest Route

In this section we discuss the optimal value function

L = min X X
h|

1<j<g ieJ,




g 16
:} where I = {1,..., n}, Jl,..., Jl is a clutter over I, and xl,..., Xn have .
' ¢
-, .
marginal distributions Fl,....Fn and a joint distribution P ¢ p . When '
.
' Jl,..., JJI. are the clutter of paths in a network, L is the shortest
route; when Jl,..., Jf. are the clutter of cuts in a network, L is the :
-':. -
:f" maximal flow. The results about L exactly mirror the results about M in "
' section 2. This is due to the duality between the various pairs of
* concepts occuring here: path-cuts, series-parallel, min-max, convex— it
:_{ concave, P(X < x) - P(X < x), and E(X - x)+ - E(X - x) . .
The function n(x) in (4) is given by:
=
+, 0 +
n(x) = inf {(x - min T vi) + T E(vi - Xi) } (17)
v 1<j<y ieJJ- i=1
::'. and for x < x, = sup{xl n'(x) < 1}, (17) 1is equivalent to
-
+
n(x) =min £ E(v, - X,) (18) .
i i “
Iy v iel R
| - s.t. I \ > x ij=1l,...,2 \
I ieJJ.
. with Lagrange multipliers )‘1,..., }\2- o
. Theorem 3.1: "
A} + .
(1) n(x) = silJp E(x - L) |
. (ii) There exists a random variable L such that for all x, n(x) "
." + c
=E(x-§),andLéLforallPep. 5
(iii) For every x there exists a P ¢ p for which E(x - L)+ = n(x). ‘4,
. (iv) A particular P ¢ p satisfying (1ii) is of the form: Xl,..., Xn
. -1 -1 :
= Fl (¢1(U)),..., Fn (¢n(U)), where U ~ U(0, 1), and ¢i have at N
most £ discontinuities and are linear in between. ':
(v) For every x < L and P as in (iv), the Lagrange multipliers of
: (18) satisfy: R
. A, <P(L<x, & X, =1L) .
-." j i&] i »
o g
[ ] 3
~
. with equality 1f all Fi's are non atomic (absolutely continuous). N
., -
- "

Y

L\AL;i‘\M&iM . r. \1 g.‘r-n;
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(vi) The constant min X E(Xi) is concavely larger than L for all
1<j<e ier

P ¢ P; in particular it is > E(L).
Proof: This is a corollary of theorem 2.1, if the problem is reformulated

in terms of —Xi, with -L = max (~-X,)).
1<j< ite

The modular decomposition theorem 1.2 and monotonicity (with respect to
)k) hold for L, in analogy with M.

Computational Aspects: The program (18) has a separable convex

nondecreasing objective function and linear constraints, and can be
approximated by a linear program, like (7).

For the shortest route application, the solution of (18) can be
obtained by using Y1 = - Xi’ and solving (7).

For the maximal flow application, when Jl, e, J2 are cuts, problem

(18) has the following deterministic interpretation: Find flows (or

capacities) vy for nodes 1 =1, ..., n, so as to obtain a flow (maximal

flow) of x, at minimal cost, where the cost of flow vy in node { i{s given

by E(vi - Xi)+, which is convex nondecreasing in v,. This deterministic

i
problem is very similar to the dual problem for the project planning

application, given by (1l4). 1t can be solved parametrically for all flow
values x, using the out of kilter method, cf Lawler [1976].

In applications to shortest route problems one may have a design value
x and a convex decreasing reward function C(y) for values of L = y. 1In
applications to maximal flow problems one may have a target flow x and a
convex decreasing penalty function C(y) for value of L = y < x. n(x) and L
provide upper bounds for the expected shortfall below x, E(x - L)+, and of

E(C(L)). The solution of (18) provides similar information for redesign as

in the critical path applications.
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' 4. Stochastic Upper and Lower Bounds for Reliability System Lifetime
LS
: SQ In this section we discuss the optimal value functions
)
i “a T' = max min X, (19)
h Lej<k gl
b and
. ::: T" = min max Xi (20)
L e leje fed,
!l where I = {1,...,n}, Il,..., Ik and Jl,..., J2 are two clutters over I, and

Xl,..., Xn have marginal distributions Fl,..., Fn with joint distribution
function P € p. If Il,..., Ik are the paths and Jl,..., JZ are the cuts
- of a reliability system (defined through a network or through a general
Boolean coherent structure function as in Barlow and Proschan [1975]), and
N also for any other pair of blocking clutters as shown by Edmonds and
Fulkerson {1970], T' = T". For a reliability system, if nodes 1,..., n
represent components, and Xl""’ Xn are the component lifetimes then T =
.. T' = T" is the system lifetime.

We will show that the supremum functions ofx) and B(x) of (4) are

given by solution of the following linear programming problems:

k
a(x) =max I A

A A=l 3

s.te I Ay < Fi(x) 4=1,...,n (21)
iel
r: jl 3
T k
I X, <1
G =1
o A, >0
j
:% and
[ % 2
. B(x) = max I uj
;‘ v J=1
s
sS.te. E uj < Fi(x) i= 1,.00, n (22)
."é- jlist
£
o T <1
:E -1 N >0
"3

Cy

!
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where Fi(x) =] - Fi(x) = P(Xi > X). The analogy with the programs (7)

and (18) is seen in the dual programs to (21), (22):

n
a(x) = min I Fi (x) v, + w
i
v 1=1
s.t. I vy +w>1 j=1,..., k (23)
iel
h
w, v, >0
n
B(x) = min I F_(x)u, + w
i i
u i=1
s.t. T ug + w1l 3= 1,000, & (24)
ieJ,
J
wyuy >0

The following theorem is implied in parts by Zemel [1982].

Theorem 4.1:
(1) a(x) = Sﬁp P(T' > x), B8(x) = Sﬁp P(T'' < x).
(i1) There exist random variables T and T such that for all x, a(x) =

P(T > x), B(x) = P(T <x), i.e. T 3., T' and T <

ST ST
(1ii) For every x there exist P', P'' ¢ p for which P(T' > x) = a(x),

T'' for all P ¢ p.

P(T'' < x) = B(x).
(iv) 1In particular P', P” ¢ P satisfying (iii) exist which are of the
-1 -1
form X;,..., X =F, (¢1(U)),..., F (¢n(U)), where U ~ U(0, 1) and

¢i have at most max(n, k) (max(n, 2)) discontinuities and are linear

inbetween.

(v) For every x and P', P'' as in (iv), the solutions (21), (22) satisfy

AJ< P(T' > x, min Xy = T')
iel
b
My <P (T" < x, max Xy = ™)
ie:Jj

with equality if all Fi's are non atomic (absolutely continuous).
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Proof: (ii) From the form of the objective functions of (21), (22) a(x) is

nonincreasing and B(x) is nondecreasing. From (23), (24) 0 < ofx) < 1 and

0 < B(x) <1. From (23) (24) one obtains f(-=) = (=) = 0, and from

(21), (22) o(-=) = B(») = 1. ofx) and B(x) depend continuously on Fi(x),

which are continuous from the right, hence o(x) and B(x) are continuous

from the right. Thus 1 - o(x) and B(x) are distribution functions,

defining T and T.

(1i1)(iv), We shall describe the construction of members of P as stated in

(iv). For given x, let X (p) be the optimal basic solution of (24) ((22)).

k L
Let >‘k+1 =1 - :‘1 Aj, Mop1™ 1 - §=1uj, Ik+l = J2+1
and let:
o, = z A, < F (x)
i . 3 i
iel
jlter;
B, = z u, < F (X),
bosltes, t

= b

and define for each 1 = 1,..., n the following functions for 0 < u < 1:

m-1 m
If % )\j<u< b Aj,and xm+o, (1l <m <k + 1):
j=1 j=1
m1
(1 - ai) + oy (u - j£1 Xj)/\n 1 eI
¢'(u) =
i / ik
(1 ai) (u z Xj) Nm Im
j=1
m—1 m
and 1f T My <u< g My and M $0, (1L <m < g+ 1):
j=1 j=1
m1
By (u - jEl uj)/um 1 edy
' =
N (v)
m—-1
Bi+(1'81) (u- ¢ j)/u 11:Jm
=1
"""" N S0 S U B S A A L

‘-

_L‘&.J.. i.‘.f
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It is clear from the construction that le (¢i(U)) and le (¢i'(U))

are both distritkuted as Xi if U ~ U(0,1) and we have P', P'' € P. With

m-1 m m-1 m
probability Am (um), 'E Xj <U < .E Aj (.E uj <U < .E uj), and in that
j=1 =1 =1 j=1

case, ¢i (mwy >1 - ai> Fi(x) (@i’ (v < Bi< F1 (x)) so X1 > x (X1 < x) for

fel L iel
m m

all i ¢ Im (1 ¢ Jm). But then min X, > x (max Xi < xX) and so T' > x
(T'' < x). Thus ofx) <P (T' > x) and B(x) < P(T'' < x) for P' and P''
respectively, with equality actually occuring because of (i).

(1) We prove (1) for of(x), the proof for B(x) is analogous. Define for

each j=1,..., k, Aj = {Xi > x1}, Ag the complement event of Aj’ and
ite

C
define for each ¢ # K ¢ {1,..., k} By = jZk Aj f}x Aj. Let A, = P(By)

for an arbitrary P ¢ p. Then P(T > x) = P(}J Aj) P(kJ BK) =3 AK. Let
K

i be some node in I. Then if 1 € Ij and j € K, BK < {Xi > x}, hence

zxkd*i (x) i=1,..., n (25)

where the summation is over all K's such that i ¢ Ij’ j € K for some j.

If we set up the program

max I (26)
%
s.t. (25) and I XK <1, AK <0 (26)
K

then the solution is > P(T' > x) for all P € P. The linear program (26)
has a variable AK for each subset K < {l,..., k}. 1In particular this
includes Al,..., Ak which correspond to the singletons.

Consider any K which is not a singleton, say K 2 {i, j}. Then the

variable AK appears in every constraint in which Ai or Aj appear. It is




~, _.:-
N
6 22
e then clear (by examining the dual problem) that )\K need not be basic 1in -
’ an optimal solution, and so it is a redundant variable. Thus (21) has .
. the same solution as (26) and so a(x) » P(T' > x). This completes the
o
4
. proof. v
» Modular decomposition and Monotonicity: hold for a(x), B(x) as for VY, .':-
Ne .
Computational aspects: The main difficulty in solving the LP's (21), (22), '.'_2'_
is the number of variables, one for each path, which may grow exponentially :::f‘
with the number of nodes. Consider solution by the simplex method. Then B
one can avoid the necessity of handling such a large number of variables, ::;.
by using column generation, as follows: Let A be a basic feasible solution -
- to (21) and let v be its simplex multipliers; assume Aj <1 and so w = 0. i
.
. This solution is optimal if v is dual feasible, that is ::-
‘::-
i = c e hY
x ;: vy ? 1 j 1, » K 3
| 3
to check that, one can solve the shortest route problem with the weights
E vy If the solution is < 1, it gives a new path Ij for which )\j should -
i enter the basis. N
The solution for all values of x can again be done using parametric N
- LP. :
Zemel [1982] has shown that if the shortest route problem, min ,
1<j<k
) z Vv s can be solved in polynomial time then so can the LP (21), by ;‘:‘_
.. I
<, 3 N
<. S
- employing an ellipsoid type algorithm. In particular, for a two terminal -
'; network the shortest route problem is indeed polynomial. This is in =3
o) '.’-‘
. o3
K4 -
)
\--
- ~13
< \-
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sharp contrast to the fact that the calculation of the reliability of a
two terminal network with independent components is NP hard, as shown by
Rosenthal [1975], Ball [1980] and Valiant [1979]. This great difference
in difficulty of calculation between the independent case and the bounds
of the present paper is the most remarkable feature of these bounds.

Redesign of a reliability system: The solution of (21, 22, 23, 24)

provides similar information for redesigning the reliability system as we

had for M and L. Typically one may have a target system lifetime x and be

interested in P(T > x). Else one may have a monotone decreasing penalty

function C1 (y) for T = y < x, or a monotone increasing reward function

Cz(y) for T =y » x, with (C'l, C'2 are the derivatives of Cl’ C2):
E(Cy) = Cy(x)B(x) +_ S - C{(y)B(y)dy
(27)
E(C)) = Cy(x)a(x) + 2 Ci(y)aly)dy

providing upper bounds for penalty or reward.

If B{x), ofx) are replaced by ui(x) Fi(x) and by vi(x) Fi(x) in (27)
where u(x), v(x) are the solutions to (24), (23), one gets an assignment
of penalties or rewards to the various nodes for the extreme cases.
Similar assignments are obtained for modules. The probabilistic

B, can also be used in redesign, as in

interpretations of Xj, uj, as By

section 2.

5. Discussion

In this paper we have developed various bounds of various types for
the optimal value functions M, L, T. It is fortunate that each of those
bounds is exactly of the type most useful in application. The bounds for

T are stochastic, so that given a target date x we have upper and lower

~

U AL et Oy
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bounds on the system reifability P(T > x) at the date x. The bound for M

is an upper bound in the convex majorisation sense, which in the critical
i path length application gives an upper bound to the expected tardiness
beyond a target day x, E(M - x)+. The bound on L is a lower bound in the
A concave majorisation sense, which in the maximal flow application gives an
l! upper bound on the expected shortfall of the flow below a target level x,
E(x - L)+.
g? For aesthetic reasons, or for some unforeseen applications one would
nevertheless desire the bounds not obtained here, i.e. stochastic bounds
on M, L, convex lower and concave upper bounds on M and L respectively,
and convex and concave bounds for T. In the following discussion we
explain why these are unlikely to possess the same nice properties as the
bounds already obtained.

In section 1 we introduced three special joini distributions, the

-q: *
.I perfect tracking distribution, P , and the max and min antithetic

Kk kkk
distributions, P , P , which achieve the various bounds for the pure

series and the pure parallel system. We state the following simple lemma:
! Lemma 5.1: Let J]lbe a family of distributions. If M* ¢ |1 satisfies

M*>C M for all M ¢ |1, then there is no member M e M for which M > M for

- ST
:{ all M € N1 unless M= Mk,
- - * - - * -
'E Proof: Assume existence of M. Then M >ST M >c M, so M >c M >c M, so
+ + =
E(X-x) = EM*(X - x) for all x, and M = M*.
. M

A Since P* does not in general stochastically majorize or stochastically
o minorize I Xi (the only exclusions one can think of are when n-1 of the

variables are deterministic and]J has only one member), stochastic bounds

on M (L) in the purely series (purely parallel) case will not be obtained

within p .
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We do not know how to construct convex lower bounds or concave upper

n
bounds for T Xi' Such bounds if they exist within will minimize the
i=1
n
variance of I Xi and will provide the optimum distributions for variance
i=1

reduction in Monte Carlo simulation, as discussed by Hammerseley and
Mauldon {1950], Handscomb [1958] and Whitt [1976].

Next we note that M is nondecreasing convex, L is nondecreasing
concave and T', T'' are nondecreasing but neither convex nor concave. The
generalization of the bounds from the pure series or pure parallel case to
general series parallel systems and the property of modular decomposition
follow from the fact that >c’ >k’ >ST are preserved respectively by non-
decreasing convex, nondecreasing concave and nondecreasing functions. We
cannot however expect the same to hold for concave bounds on M, convex
bounds on L or convex and concave bounds on T, T'. The stochastic bounds
on T 1f obtained within l] are of course also sharp convex and concave
bounds. If they are obtained outside ]) we do not know how to construct
sharp convex or concave bounds.

The bounds discussed in the present paper provide one way of
circumventing the impossible problem of calculating the exact distributions
of M, L or T. We conclude by mentioning other approaches that appear in
the literature. These are based on special models for which the
distributions of M, L and T are tractable, namely:

= Markovian systems: If the weights have independent exponential
distributions then M, L, T have phase type distributions in the sense of

Neuts [1981], and their distributions can be evaluated, though at

considerable computational effort, e.g. Kulkarni and Adlakha [1984].
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- Series Parallel systems with independent weights: The
distributions of M, L, T are obtained by convolutions products and

complementations.

~ "Perfect tracking” (Nadas [1979]): Each weight X, is of the form

i
Xi = a, + bi z2,i1i=1,..., n, where Z is a single random variable, common
to all the Xi's. If p = P(Z < z), then the p percentiles of M, L, T are

obtained from the values X, = a8 + bi Z.

By approximating Fl’ ooy Fn with phase type distributions one can
presumably get bounds on M, L or T using the first approach.

Series parallel systems form the basis for calculations of bounds on
values of P(V > y) where V is M, L or T - see Robillard & Trahan [1977],
Shogan [1977], Devroye [1979] for PERT and shortest route applications, and
Barlow and Proschan [1975], Esary & Proschan [1970], Shogan {1978], Natvig
[1980] for reliability applications.

The approach of the present paper utilises the third approach of

perfect tracking.
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